Laplace Transform Calculator
Result:
Laplace Transform Theory
The Laplace Transform is defined as:
\[ \mathcal{L}\{f(t)\} = F(s) = \int_{0}^{\infty} e^{-st} f(t) \, dt \]
Common Transforms
| Time Domain (f(t)) | Frequency Domain (F(s)) | 
|---|---|
| 1 | \(\frac{1}{s}\) | 
| \(e^{at}\) | \(\frac{1}{s-a}\) | 
| \(t^n\) | \(\frac{n!}{s^{n+1}}\) | 
| \(\sin(\omega t)\) | \(\frac{\omega}{s^2 + \omega^2}\) | 
Properties
- Linearity: \(\mathcal{L}\{af(t) + bg(t)\} = aF(s) + bG(s)\)
- Differentiation: \(\mathcal{L}\{f'(t)\} = sF(s) - f(0)\)
- Integration: \(\mathcal{L}\left\{\int_0^t f(\tau)d\tau\right\} = \frac{F(s)}{s}\)
Note: This calculator supports basic transforms. Complex functions may show integral form.
 
 
 
 
0 Comments